If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=4.9t^2+20t+10
We move all terms to the left:
t-(4.9t^2+20t+10)=0
We get rid of parentheses
-4.9t^2+t-20t-10=0
We add all the numbers together, and all the variables
-4.9t^2-19t-10=0
a = -4.9; b = -19; c = -10;
Δ = b2-4ac
Δ = -192-4·(-4.9)·(-10)
Δ = 165
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{165}}{2*-4.9}=\frac{19-\sqrt{165}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{165}}{2*-4.9}=\frac{19+\sqrt{165}}{-9.8} $
| 4x+9=-21 | | 27+x+2x-3=180 | | 3y-0.5=-8 | | (2/3x-11)-(1/2x-5)=0 | | 4(2x2)=-2(3x+16) | | (7−2x)+7=49 | | (1/7(2x-5))=(2/7x+1) | | 2x^2+5x=180 | | 6(3k+52)=3 | | -5y-2=-2 | | -7(y-5)=42 | | 9x-70=2 | | B=3.14r*r | | (2(z+3))/3=5-z | | 5x+31x-10=9(4x+8) | | -8y+8=16 | | 8y/3=13 | | 8x-60=8 | | -4x+35=3 | | 4x^2=2x^2=17x-30 | | -2y+18=1 | | 2(3y-5(=14 | | 5(y+9)=85 | | 43.82=9g+3.59 | | 18•5x=x | | -6x-29=1-3x | | 12(n+1)=108 | | 3x^2+11=18x^2-12x+10 | | 4x^2=17x-30 | | F(x)=x3(4x2-5x-6) | | 2X50+2y=160 | | -15=-3/5w |